

高効率電気光学結晶KTNを用いた光デバイスの開発

NTTフォトニクス研究所

**** **** 藤浦 和夫 /豊田 誠治 /毎浦 正弘 /今井 欽之

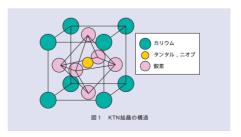
電気光学効果を用いた光デバイスは、光通信システムにおいて、電気信号を光信 号に変換する光変調器などに使用されています、NTTフォトニクス研究所で開発を 進めている世界最大の電気光学効果を持つ結晶材料と、その材料を用いた光デバイ スの最近の進展や今後の展開について解説します。

電気光学効果と光デバイス

電気光学効果とは,材料に電界を加 えることにより屈折率が変化する現象で あり、これまで数多くの電気光学効果 を持つ材料が研究されてきました,主 に強誘電体と呼ばれる酸化物結晶がそ の中心であり、中でもLiNbOaは携帯電 話に用いられる表面弾性波フィルタや、 長距離伝送用の光変調器に幅広く用い られています。そのほかにも研究された 材料はありますが,作製可能な結晶の 大きさや電気光学効果の大きさが不十 分であり、LiNbO。以外に実用になって いるものは多くありません.

特に光通信分野では,近年,基幹ネッ トワークの大容量化は一段落し、メトロ やアクセス系ネットワークの大容量化・ 高機能化を目的とした開発が進展して います、このために必要となる光変調器 や光スイッチについてもLiNbO。光デバ イスが候補となりますが, 小型化と動作 電圧の低減が課題となっています。この デバイスのサイズや駆動電圧は材料の電 気光学効果の大きさによって決まってい ます.したがって,この課題を解決する ためには、従来の電気光学結晶LiNbO。 の効率を上回る新たな材料の開発が必 須です.

KTN結晶


KTN (KTa₁, Nb₂O₃)結晶とは、カ リウム、タンタル、ニオブと酸素からな る透明な光学結晶であり、1950年代に 初めて合成されました(1),この結晶は, 立方晶という結晶構造を持ち 光学的 異方性*がないこと, 熱や水に対して安 定であるという特徴を持っています、材 料の電気光学効果には,加えた電界に 屈折塞変化が比例する1次の電気光学 効果 (Pockels effect: ポッケルス効 果)と,加えた電界の二乗に屈折率変 化が比例する2次の電気光学効果 (Kerr effect:カー効果)があります が、KTN結晶は2次の電気光学効果が 極めて大きい材料であることが知られて いました、しかし、結晶成長が難しく、 十分な性能評価ができず、実用的な光 デバイス材料とは考えられていませんで L.t-

NTTフォトニクス研究所では、「KTN の大型結晶作製には温度の精密制御が 重要である。ことを見出したことにより 光デバイスが作製可能な40 mm角とい う実用的な大きさを持つ結晶の作製に 成功しました.

KTN 結晶の機造を図1 に. 作製した KTN結晶の写真を図2に示します。

今回作製したKTN結晶の電気光学効 果を評価するために、電圧を加え結晶 の屈折率変化を測定しました,その結

^{*} 光学的異方件: 結晶軸の方向によって屈折率が 異なる性質、

果を従来材料であるLiNbOaと比較した ものを図3 に示します、図のように、 KTN結晶はLiNbO。に比べて大きい屈 折率変化を示しており、電界の二乗に 屈折塞変化が比例する傾向を示してい ます、一方、LiNbO。は電界に屈折率 変化が比例しています、このため、加え る電界が大きくなるにつれKTN結晶の 屈折塞変化はLiNbO。に比べて大きくな り、このグラフの傾きで表される電気光 学係数は,60 V/mm以上の電界で, LiNbOaの持つ電気光学係数の20倍と なる600 pm/Vを示し、100 V/mmで は1000 pm/V に達しています.

今回作製したKTN結晶を従来の電気 光学結晶と比較したものを図4に示し ます、この図で明らかなように、電気光 学効果が十分に大きく、 実用的な結晶 サイズが実現できていることが分かります。

光道波路の作製

作製した結晶を基板に用い、その上 にKTN結晶膜をLPE法 (Liquid Phase Epitaxy:液相エピタキシ)により成長 する技術を確立しました.

今回光導波路の作製に用いたプロセ スを図5に示します。

LPE法とは溶液に基板を浸し、基板 上に所望の結晶膜を成長させる方法で す、欠陥の少ない高品質な結晶膜を、 高い成長速度で作製できることが特徴 です、今回基板表面の温度変動を抑制 し,結晶膜の成長速度を精密に制御す ることが可能になりました、その結果, 光導波路に必要な5~10 μm厚の高品 質な結晶膜を精度良く作製することが できました, さらにドライエッチング技 術との組み合わせにより、コアとなる結 晶膜をリッジ形状に加工し、再度、 LPE法で上部のクラッド層を形成するこ とにより,埋め込み型の光導波路を作製 しました。

作製した光導波路断面の顕微鏡写真 を図6に示します.

写真の中央部に明るく見えているの は、光が伝搬するコアになります、この 導波路は,基板に対する光の2つの偏

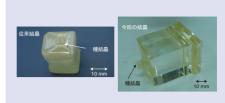
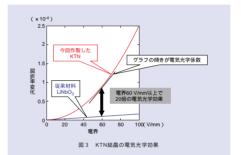
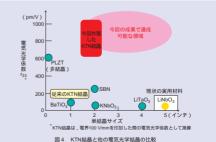
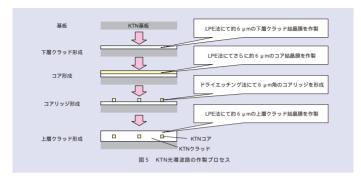
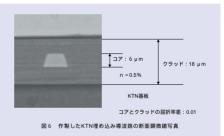
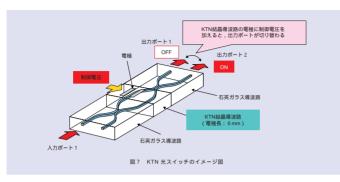





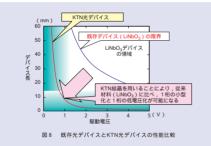
図 2 作型したKTN結果

光,TEおよびTMモードに対して単一 モード導波路として機能することを確認 しました。


また光の透過損失が0.5 dB/cm以下 という低損失な光導波路を実現しました。この技術により,所望の光回路を 構成することが可能になりました。

光スイッチへの応用


KTN結晶の高い性能指数を光デパイ スで実証することを目的とし、マッハ ツェンダ干渉計型光スイッチを作製しま した。


作製した光スイッチの構成を図7に示 します.

マッハツェンダ干渉計はKTN結晶導 遠路と石英ガラス導波路の方向性結合 整で構成しています、干渉とは、2つの 光の波が同一点で置なり合って互いに 強め合う,あるいは弱め合う現象です。 なり、分岐した2つの光を再合成する ことで,光の干渉を起こす装置です。分 岐した2つの光の光路差を変化させる ことにより,再合成した光の強度を変化 させることができます。今回の光スイン チでは、分岐した光が2本のKTN結晶 導波路を伝搬し,再度、石英ガラスが 遠路の方向性結合器で合成されます。

2本あるKTN 結晶導液路の片方だけに 情報した電極に電界が印加されると片 方の導液路の服折率が変化します。そ の結果,2つの導液路伝搬する光に位 相差が生じ,再合成した際に出力ポートが切り替わり、光スイッチとして動作 します。作戦した光スイッチの特性を測 定したところ,1.3 V で光路が切り替わることを確認しました。後来の光スイッ 方は10~50 V^[216]の電圧を必要とし、 KTN光スイッチは、後来の約10分の1 の電圧で動作することが確認できまし た。また光はその進行方向に無きな ので51と盲母の方向に振動できる2つの 米の成分 TEおよびTM モードに分ける ことができます。一般に光導液路では、 基板の垂直方向と水平方向の光学的性 質がわずかに異なるために、その性能が 偏光によって異なる現象が起こります。 切光学結晶を用いた光デバイスでは2つ の偏光で性能が大きく異なるため、電 気光学結晶を用いた光デバイスでは2つ の偏光で性能が大きく異なり、その気 版が大きな課題でした。今回 KT N結晶 は光学的真方性がないという特徴を偏 光に依存しないスイッチにとって必須である。 米に依存しないスイッチが上で湯小の駅 米半低存在りは1スイッチが上で湯小の駅

動電圧を達成しました.

KTN結晶のポテンシャルと 今後の展開

今回作製したKTN結晶の特性から予測される光デバイスの性態を従来の光ゲ バイスと比較した結果を図 8 に示します。図のようにKTN結晶を用いることにより、従来のLINbO、光デバイスの駆動電圧やサイズを1桁改善できることが分かります。またサイブや駆動電圧の改結は、KTN結晶が持つ多くの性能の一部を利用したに過ぎず、さらに多くの機 能を発現できると期待されます。今後は 高機能光信号処理デバイスの実現に向 け、大型結晶の育成や大規模な光回路 作製を進め、KTN結晶が持つ極めて大 きで電気光学効果の有効性を実証して いきます。

参考文献

- S. Triebwasser: "Study of ferroelectric transitions of solid-solution single crystals of KNbO₂-KTaO₃," Phys. Rev. , Vol.114 , No.1 , pp.63-70 , 1959.
- (2) A. Chen, R.W.Irvin, E. J. Murphy and R. Grencavich: "High performance LiNbO₃ switches for multiwavelength optical

- networks ," OSA TOPS Vol.32 Photonics in Switching , pp.163-167 , 2000 .
- (3) K. Nashimoto , H. Moriyama , S. Nakamura , E. Osakabe and K. Haga : "PLZT electrooptic waveguides and switches ," Tech. Digest of OFC 2001 , paper PD10 , 2001.

(左から)藤浦 和夫/豊田 誠治/ 笹浦 正弘/今井 欽之

技術の革新には新たな材料の開発が重要 です、今後は、KTN結晶の可能性を追求す るとともに、革新的な光デバイスの開発へ 取り組みます。

NTTフォトニクス研究所 複合光デバイス研究部 TEL 046-240-4531 E-mail fuilura@aecl.ntt.co.ip

問い合わせ先