原子層物質のCVD成長技術

グラフェンや六方晶窒化ホウ素(h-BN)などの原子層物質は、従来の エレクトロニクス材料を凌駕する電気・光学特性さらには新奇物性を有す るなど、既存デバイスの高性能化のみならず新機能デバイス創製の可能性 を秘める次世代のエレクトロニクス材料です。産業応用に向けて、原子層 物質を大面積で高品質に作製する手法の確立が望まれています。本稿では、 高品質グラフェン単結晶の大面積化、結晶方位制御によるh-BNの高品質 化技術を紹介します。

Shengnan Wang たにやす ょしたか 谷保 芳孝

NTT物性科学基礎研究所

原子層物質

原子層物質は原子1個もしくは数 個分の厚みしかない層状の物質です (図1).代表的な原子層物質であるグ ラフェンはC(炭素)原子が蜂の巣の ような六角形格子状に連なった構造か らなり、厚さが原子1個分しかない究 極的に薄い単原子層の物質です⁽¹⁾.グ ラフェンは、線形分散の電子のエネル ギーバンドを有し、非常に大きな電荷 移動度(電気伝導性)や赤外から可視 光の広い領域で波長無依存の大きな光 吸収性などユニークな特性を示しま す.さらには、物質中最大級の熱伝導 性、機械的強度を有しています.

グラフェン以外にも、MoS₂(硫化モ リブデン)、MoSe₂(セレン化モリブデ ン)、MoTe₂(テルル化モリブデン)、 WS₂(硫化タングステン)、WSe₂(セ レン化タングステン)、WTe₂(テルル 化タングステン)などの遷移金属ダイ カルコゲナイド(TMDC: Transition Metal Dichalcogenides)や、半導体デ バイスに用いられるSi(シリコン)や Ge(ゲルマニウム)の原子が層状に 配列したシリセンやゲルマネンなど数 多くの原子層物質が存在します。例え ば、TMDCは単層が原子3個分の厚 みの物質で, バンドギャップが層数に よって変化する特異な物性を有する半 導体です. また, TMDCは大きなス ピン軌道相互作用に由来するスピンに 依存した電気伝導や偏光特性を有して います.

h-BNは,周期表で炭素の両隣りの B(ホウ素)とN(窒素)からなる化 合物であり,グラフェンと同じく六角 形格子状の結晶構造からなる単原子層 物質です.h-BNは約6 eVの大きなバ ンドギャップを持つ絶縁体であり,絶 縁膜やトンネル障壁として機能しま す. さらに、h-BN上にグラフェンや TMDCを積層すると、グラフェンの電 荷移動度が向上すること、TMDCの発 光強度が増加することが報告され、 h-BNは原子層物質の性能を最大限に 引き出すために欠かせない物質です.

現代社会を支えるシリコン半導体デ バイスの微細化が限界に近づきつつあ る中,原子層厚で機能を発現できる原 子層物質への期待が高まっています. さらに,原子層物質には,金属,超伝

導体,磁性体から半導体,絶縁体まで 多種多様な電子材料が存在し,また, 光学的機能はテラヘルツから赤外・可 視・紫外の広い光領域をカバーしてい ます.そこで,軽くて曲げられるフレ キシブルデバイス,高速・省電力の超 小型トランジスタ集積回路や大容量メ モリ,高効率の発光デバイス・発電デ バイス,小型軽量の超高感度センサな ど,高度情報化社会の発展に資するデ バイスへの原子層物質の応用が期待さ れています.

原子層物質の作製手法

原子層物質の作製方法として,剥離 転写法や薄膜成長法など各種提案があ ります.図2に示しますように,剥離 転写法は,天然に存在する,もしくは, 人工的に合成された微結晶(粉末)か ら粘着テープを用いて原子層を劈開 し,Si等の基板上に転写する方法で す.コンスタンチン・ノボセロフとア ンドレ・ガイムの両博士は,この簡便 な方法でグラファイト(黒鉛)からグ ラフェン1層分を引き剥がして,グラ フェンの特異な物性を実証し,ノーベ ル物理学賞を受賞しています.本手法 により,原子層物質の基礎物性が次々 と解明されるとともに,デバイス応用 の可能性が示されてきました.しかし, 本手法で得られる原子層物質の大きさ は,微結晶のサイズにより制限される ため一般的に数10μmと小さいうえ, 手作業での剥離転写のため再現性とス ループットに乏しく,集積デバイスの 産業化には不向きです.そこで,剥離 転写法に代わり,原子層物質を高品質 かつ大面積に再現性良く形成する技術 の開発が望まれています.

薄膜成長法の1つである化学気相堆積 法(CVD: Chemical Vapor Deposition) は、ガス状の原料を加熱した基板上に 供給し、化学反応により物質を合成す る手法です.原料はガス状で供給され るため大きな基板にも全面に均一に広 がることから、CVDは大面積成長に 適しており半導体デバイスの量産製造 プロセスで広く利用されています.原 子層物質でもCVD成長の技術開発は 進められています.現状では、原子層 物質を大面積基板の全面に形成できる ものの、結晶方位のそろっていない結

晶粒が合体した多結晶のため品質は低 く,また,各結晶粒の大きさは剥離転 写法と同程度の数10 µmと小さいなど 課題があります.本稿では,NTT物 性科学基礎研究所が取り組んでいる原 子層物質CVDに関して,グラフェン 単結晶の大面積化技術,h-BNの結晶 方位制御技術を紹介します.

グラフェン単結晶の大面積化技術

グラフェンのCVD成長の概略を図 **3**(a)に示します。銅基板を反応炉内 に導入後、Ar (アルゴン)やH。(水素)、 もしくはこれらの混合ガス中で成長温 度(約1000 ℃)まで加熱します. そ の後、銅基板表面に自然に形成されて いるCu₂O(亜酸化銅)などの酸化膜 をエッチング(除去)するためのアニー ルを行い、炭素原料であるCH₄(メタ ンガス)を導入して、グラフェンの成 長を開始します.成長を開始すると. 銅基板表面のいたる所でグラフェンの 結晶核が形成します. 成長を継続する と、 グラフェンの結晶核サイズは拡大 し(結晶核が大きくなると結晶粒と呼 びます)、近くの結晶粒と合体するこ とで、 グラフェンは銅基板表面全体を 覆います. 核形成密度が低いほど、近 接する結晶核間の距離が離れることか ら、大きな結晶がつくられます。核密 度は成長温度,原料供給量などのグラ フェンの成長条件に依存することが知 られています.

一方, グラフェンは酸化膜上では核 形成せず, 酸化膜が除去された銅表面 上で核形成します. ガス種によって酸 化膜のエッチング速度は異なり, Ar ガスよりも還元性の高いH₂ガスのほ うが酸化膜のエッチング速度は大きく

なります. グラフェン成長前の銅基板 のアニールをArガスのみで行い。銅 基板表面の酸化膜を完全に除去せず被 覆状態をアニール時間により調整した ところ、 グラフェンの核形成密度を精 密に制御できるようになり、図3(b)に 示しますように従来よりも100倍大き い、ミリメータサイズのグラフェン単結 晶を作製することに成功しました⁽²⁾.本 グラフェンを用いて電界効果トランジ スタ (FET: Field Effect Transistor) 構造を試作したところ, 従来のCVD 手法で作製した数10 µmサイズのグ ラフェンよりも電荷移動度は10倍近 く高く、また、剥離転写法のグラフェ ンを用いて作製したFETと同程度の 特性が得られました.これらの結果は. 本手法が高品質のグラフェン単結晶の 大面積化に有望であることを示してい ます.

h-BNの結晶方位制御技術

h-BNは、グラフェンと同様に、銅 基板上にCVD法を用いて成長しまし た.BNを合成する場合、原料には H₆BN (アンモニアボラン)を用いま した.一般的に、CVD成長する物質 の結晶方位は基板の結晶構造、結晶面 方位に強く依存します. 銅は面心立方 格子構造の結晶です. 市販されている 銅基板は多結晶ですが、CVD成長の アニール過程において、銅基板は加熱 により再結晶化します. 再結晶化では, 多結晶の結晶粒どうしが合体して大き くなり、また、基板表面では結晶粒の 特定の結晶面が現れています. 例えば. 銅の代表的な結晶面の(001)、(101)、 (111)面上では、結晶面の回転対称性 を反映して,結晶方位が2方向または 4方向にそろう多方位のh-BNが形成 します.結晶方位の異なる結晶粒どう しが合体する場合,それぞれの結晶粒 は原子レベルで結合できず,粒界に欠 陥が発生します. 特

100種類以上の異なる結晶面上に成 長したh-BNの結晶方位を系統的に調 査したところ. (101) 面から傾いた結 晶面上にh-BNを成長した場合、図4 (a)右側の顕微鏡像に示しますように, 三角形状のh-BN結晶粒がすべて同じ 方向を向いた、結晶方位が一方向にの み配向する単一方位のh-BNが成長す ることを発見しました⁽³⁾.理論計算か ら,傾いていない(101)面上では原子 が安定に吸着できる格子位置が2パ ターンあるためh-BNの結晶方位が2 方向を取り、(101)面から傾いた結晶 面上では結晶表面の対称性が破れるこ とから安定な吸着位置は1パターン となり単一方位のh-BNが形成するこ とを明らかにしました. この単一方位 に配向するメカニズムは、h-BNだけ でなく、 すべての原子層物質に応用で きる原理になります.

図4(b)はh-BNの電気抵抗をミクロ スケールで評価した結果です.単一方 位h-BNは多方位h-BNよりも電気抵抗 が高く,良好な絶縁性を有することが 分かりました.多方位h-BNでは,結 晶方位の異なる結晶の粒界で欠陥に起 因して電流が流れやすく,絶縁性が悪 くなっています.単一方位のh-BNで は,結晶核どうしが原子レベルでシー ムレスに結合するため結晶性が高く, 均一な絶縁性を示します.

図4(c)に示しますように, 基板全 面を単層h-BNが覆うまでCVD成長を

図4 h-BNの結晶方位制御

継続すると、多方位の場合には所々に 複数層のh-BNが意図せず形成してし まい不均一な膜になりますが、単一方 位に制御することで単層のみの均一性 の高いh-BN膜を形成することができ ます.絶縁性に優れ、均一性の良い h-BNは、原子層物質デバイスの安定 動作、性能向上に欠かせないことから、 本手法はh-BNの基盤技術になること が期待されます.

今後の展開

原子層物質のデバイス応用に向けて は、多種多様な原子層物質それぞれの CVD技術を高めていく必要がありま す.最近,原子層物質を積層した縦型 ヘテロ構造において,それぞれの層の 結晶方位の差(回転角)に依存して物 性値が大きく変化したり,異なる電子 状態に転移(相転移)したりすること が分かってきました.この原子層物質 特有の現象を利用した新機能デバイス を創製するには,CVD成長した大面 積h-BN上に所望の機能を発現できる 原子層物質を回転角制御してCVD成 長する技術が必要になってきます.さ らに,単原子層面内で異なる物質を自 由自在にCVD成長する横型へテロ成 長技術を確立できれば、1次元ヘテロ 界面や面内超格子構造に由来する新た な物理現象の発見につながっていくこ とが期待できます.

■参考文献

- 日比野: "グラフェン研究への取り組み," NTT技術ジャーナル, Vol.25, No.6, pp.6-8, 2013.
- (2) S. N. Wang, H. Hibino, S. Suzuki, and H. Yamamoto: "Atmospheric Pressure Chemical Vapor Deposition Growth of Millimeter-Scale Single-Crystalline Graphene on the Copper Surface with a Native Oxide Layer," Chem. Mat., Vol.28, No.14, pp.4893-4900, 2016.
- (3) S. N. Wang, A. E. Dearle, M. Maruyama, Y. Ogawa, S. Okada, H. Hibino, and Y. Taniyasu: "Catalyst - Selective Growth of Single - Orientation Hexagonal Boron Nitride toward High - Performance Atomically Thin Electric Barriers," Adv. Mater., Vol.31, No.24, 1900880, 2019.

(左から) Shengnan Wang/ 谷保 芳孝

NTT独自技術で創製した物質やナノ構造 に秘められた新奇物性を解き明かし,新物 質の学理の構築,新機能デバイスの提案に より,物質科学・工学の最前線を開拓して いきます.

◆問い合わせ先 NTT物性科学基礎研究所 機能物質科学研究部 TEL 046-240-3497 FAX 046-240-4718 E-mail yoshitaka.taniyasu.ry@hco.ntt.co.jp