高速光量子コンピュータ実現に向けた 連続波 ・広帯域スクィーズド光源

スワィースト

光:原

近年,世界各国で汎用量子コンピュータの研究開発が加速してお り、さまざまな手法が提案されています.NTTでは現在の光通信 技術と同じように、伝搬する光の振幅・位相に情報を重畳させる 光量子コンピュータの研究開発を進めています.この光量子コン ピュータにおいてもっとも重要となるのが、量子性の源となるス クィーズド光源です.本稿では高速・大規模・汎用量子コンピュー タ実現に向けた量子光源の研究開発に関して紹介します.

X pplN導波路 X 光望マ フンピュータ

NTT先端集積デバイス研究所

スクィーズド光を用いた時間領域 多重大規模量子もつれ状態の生成

スクィーズド状態は不確定性関係に ある非可換物理量(運動量と位置,工 ネルギーと時間など)のうち片方の量 子雑音が圧搾された非古典的な状態で す.その中でも直交位相スクィーズド 光は、図1(a)に示すように、波動像 でみたときには正弦成分もしくは余弦 成分の量子雑音が圧縮された光で、粒 子像でみたときには偶数光子数状態の 光となっています。

この光は,重力波検出や光振幅位相 を用いる光技術(連続量光量子技術) のさまざまな場面で利用されていま す.例えば,2つの真空スクィーズド 光を半透過鏡で干渉させることで,決 定論的に(100%の確率で)量子もつ れ状態を生成することが可能です.こ れを応用することで図1(b)に示すよ うに時間軸上に連なった(時間領域多 重された)大規模な量子もつれ状態が 生成されます⁽¹⁾.NTTは東京大学, 理化学研究所と共同で,この大規模量 子もつれ状態を計算リソースとして用いる光量子コンピュータの実現に取り 組んでいます.

ここで、高速・大規模・汎用な量子 コンピュータ実現には、連続波・広帯 域・高レベルなスクィーズド光が求め られます、任意の量子計算に必要とさ れる2次元クラスタ状態の生成には、 高いスクィージングレベルが求められ ます.また、連続波かつ広帯域である ことで、時間リソースを最大限に発揮 することができ、他の方式では困難で ある高速性、大規模計算性を実現でき るからです.

図1 スクィーズド光と時間領域多重化された量子もつれ状態

直接接合型の周期分極反転 ニオブ酸リチウム導波路

スクィーズド光は非線形光学現象の 1つである光パラメトリック増幅によ り生成することができます。1985年に Na(ナトリウム)原子の三次非線形 性を用いて世界で初めてスクィーズド 光が生成されました⁽²⁾.以来,さまざ まな方法でスクィーズド光は生成され ており、近年では固体の二次もしくは 三次の非線形光学効果を用いる方法が 主流となっています. その中でも二次 非線形光学結晶による導波路型の光パ ラメトリック増幅器は原理的に広帯域 な特性を発揮できると期待されてきま した. しかし、一般的に非線形光学デ バイスの加工は難しく、十分に量子雑 音が圧縮された品質の良い量子光を生 成することは困難とされてきました. 高レベルなスクィーズド光の生成には. 低損失な光導波路であること、高い非 線形光学特性を発揮すること、また、 そのために強い励起光に対する耐性を 有することが求められます. 低損失性 が必要となるのは、エネルギーの分割 に伴う真空場の混入により量子力学的 な光は容易に劣化するからです.

NTTでは、光通信分野への応用と して図2(a)に示すような、直接接合 型の周期分極反転ニオブ酸リチウム (PPLN: Periodically Poled Lithium Niobate) 導波路の研究開 発を行ってきました. ニオブ酸リチウ ムは透過帯域が広く高い二次非線形光 学係数を有する強誘電体として知られ ます. また. 光伝搬方向に周期的に自 発分極の方向を反転させることで、内 部を通過する光の非線形相互作用を高 めることが可能です. さらに私たちは、 接着剤などを用いずに基板に導波路を 直接貼り合わせることで、ワット級の 強度を有する励起光に対しても動作す るデバイスを実現しています. これま で培ってきた作製技術により、近年で は高い励起光耐性を有し、低損失で高 利得な光パラメトリック増幅器が実現 されています(3).

また,私たちのグループでは,光ファ イバ光学部品と結合が容易なモジュー

⁽b) NTTで開発しているファイバ結合型の光パラメトリック増幅器 (励起光波長帯とスクィーズド光の波長帯の光が分離されるように内部に波長分離ミラーを設置)

図2 導波路型光パラメトリック増幅デバイス

ル型の光パラメトリック増幅器を開発 しています. これは、実用化を見越し てメンテナンスフリーな光学系を構築 できるようにするためです. これまで 量子光学実験はたくさんのミラーやレ ンズが高精度に並べられた光学定盤上 でその原理検証実験がなされてきまし た. これらの光学系は実験のたびに精 密な調整が必要であり実用化において 解決すべき問題となっていました. 私 たちの作製するモジュールは図2(b) に示すように、モジュール内部で励起 光とスクィーズド光が分離される構造 になっており、それぞれ光ファイバに 効率良く結合します. このピグテール モジュールの実現によって、これまで 光通信分野で培われてきたような高信 頼・高性能な光部品を組み合わせた多 彩な操作も期待でき、実機開発を大き く前進させます.

テラヘルツ級広帯域 スクィージングの評価

スクィーズド光の量子ノイズの圧縮 率(スクィージングレベル)は従来バ ランス型ホモダイン検波という手法に より測定されてきました. この手法で は,スクィーズド光の中心周波数と同 じ周波数を有する参照光とを半透過鏡 で干渉させ、その2つの経路の出力強 度の差を電気信号として取り出しま す、その後、電気スペクトラムアナラ イザによりノイズレベルが測定されま す. そのため、この手法で測定される スクィーズド光の帯域は, 電気回路の 帯域に律速され、高々数ギガヘルツま での成分の測定しかできません. そこ で、スクィーズド光をさらに光パラメ トリック増幅することでテラヘルツ級 の広帯域な成分までの量子ノイズ強度 測定手法を考案しました. これは、こ れまでの手法では量子情報を電気信号 に変換していたのに対し、強度の高い

特 集 光を用いた次世代コンピューティングを実現するデバイス技術

ショットノイズレベルに比べて6 dB以上低いノイズレベルが測定されている. また, 6 THz以上の広帯域成分にわたってそのスクィージングレベルが維持されている.

光信号に直接変換することを意味しま す.図3に各側帯波成分でのノイズ強 度レベル測定結果を示します.実験結 果よりテラヘルツオーダの側帯波成分 に関してもショットノイズレベルに比 べて6dB以上スクィーズド光のノイ ズが抑制されていることが観測されま した⁽⁴⁾.これは二次元的な量子もつれ 構造を持つ大規模量子もつれを生成す るのに必要な4.5 dBを超える値であ り、導波路型光パラメトリック増幅器 を用いたスクィージングの世界最高水 準の値となっています.

まとめと今後の方針

高速・大規模・汎用量子コンピュー タの実現に向けて、PPLN導波路か らなる光パラメトリック増幅器を用い た連続波・広帯域スクィーズド光生成 に関して報告しました。NTTで培っ てきた非線形光学デバイス作製技術に より、6 THzという広帯域で、かつ 6 dB以上のスクィージングに成功し ました、また、ファイバ接続型のモ 図3 スクィーズド光の量子ノイズ強度測定結果

ジュールとして実装することで、光通 信部品との互換性を高め、今後の量子 コンピュータ開発を見越したデバイス 作製に取り組んでいます、今後は、 素子作製技術の高度化や最適設計を行 うことで、さらなる高性能化をめざし ます、

■参考文献

- W. Asavanant, Y. Shiozawa, S. Yokoyama, B. Charoensombutamon, H. Emura, R. N. Alexander, S. Takeda, J. Yoshikawa, N. C. Menicucci, H. Yonezawa, and A. Furusawa : "Generation of time-domainmultiplexed two-dimensional cluster state," Science, Vol.366, No. 64463, pp.373-376, 2019.
- (2) R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley : "Observation of Squeezed States Generated by Four-Wave Mixing in an Optical Cavity," Phys. Rev. Lett., Vol. 55, No. 22, pp.2409-2412, Nov. 1985.
- (3) T. Kazama, T. Umeki, S. Shimizu, T. Kashiwazaki, K. Enbutsu, R. Kasahara, Y. Miyamoto, and K. Watanabe : "Over-30-dB gain and 1-dB noise figure phase-sensitive amplification using a pump-combiner-integrated fiber I/O PPLN module," Opt. Exp., Vol. 29, No. 18, pp. 28824-28834, 2021.
- (4) T. Kashiwazaki, T. Yamashima, N. Takanashi, A. Inoue, T. Umeki, and A. Furusawa: "Fabrication of low-loss quasisingle-mode PPLN waveguide and its

application to a modularized broadband highlevel squeezer," Appl. Phys. Lett., Vol.119, 251104, 2021.

(左から) 梅木 毅伺/ 柏崎 貴大/ 井上 飛鳥

光通信をはじめとするさまざまな光技 術は,使いやすい"レーザ"の実現により 爆発的に発展しました.私たちは,高性 能で使いやすい"スクィーザ"の実現によ り,社会に還元される光量子技術の発展 をめざしています.

◆問い合わせ先

NTT先端集積デバイス研究所 機能材料研究部 異種材料融合デバイス研究グループ TEL 046-240-2022 FAX 046-240-4328 E-mail sende-kensui-p@hco.ntt.co.jp