
DCIの技術開発におけるマルチベンダコンポーザブル
サーバ実現の取り組み

幸
こ う だ

田 健
けんすけ

介

二
に の か た

ノ方 一
か ず お

生

NTT	ソフトウェアイノベーションセンタ

は じ め に

NTTソフトウェアイノベーションセンタ
（SIC）では，IOWN（Innovative�Optical�
and�Wireless�Network）構想実現に向
け たDCI（Data-Centric-Infrastructure）
の技術開発の取り組みを進めています．
DCIはIOWN�Global�Forumが定義する
全体アーキテクチャにおいて，分散データ
センタ環境やヘテロジニアスなコンピュー
ティング環境における高効率なデータ処理

を可能とする基盤レイヤとして位置付けら
れています．IOWNの全体アーキテクチャ
における重要な基盤の 1つであり，これま
での特集記事において，IOWN�Global�
ForumでのDCIの機能アーキテクチャや
コンピュートクラスタのリファレンス実装
モデルの文書化についての取り組み（1）や，
2025年日本国際博覧会（大阪・関西万博）
のNTTパビリオンにおけるDCIを活用し
たハードウェアリソースの効率的な利用と
低消費電力化の取り組み（2）について紹介し

てきました．また，NTTではDCIが複数
のコンポーザブルサーバや�GPUサーバ等
ネットワークを介して接続したハードウェ
アと，この相互に接続されたCPUやGPU
等のリソースを最適に割り当てる「DCI�コ
ントローラ」によって構成されるものとし
ています．
本稿では，デバイスを柔軟に組み合わせ

て利用が可能なコンポーザブルサーバを用
いたDCI構成に注目します（図 1）．コン
ポーザブルサーバとはホストサーバと

URL https://journal.ntt.co.jp/article/38184

DOI https://doi.org/10.60249/26025002

NTTソフトウェアイノベーションセンタでは，IOWN（Innovative	Optical	
and	Wireless	Network）構想実現に向けたDCI（Data-Centric-Infrastructure）
の技術開発の取り組みを進めています．本稿では，DCIの構成要素であるコンポー
ザブルサーバにフォーカスし，マルチベンダ機器を組み合わせたインフラ構築・
運用のための仕組み（機器管理インタフェースやフレームワーク）とNTTにおけ
るマルチベンダコンポーザブルサーバ実現へ向けた課題について紹介します．
キーワード：#DCI，#コンポーザブルサーバ，#マルチベンダコンポーザブルサーバ

図１ コンポーザブルサーバを用いたDCI構成

DCIコントローラソフト

制御割当て
DCI

GPU GPU GPU GPU

GPU GPU GPU GPUGPU

GPU

GPU GPU GPU GPUGPU

MEM MEM MEM MEM MEM

CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU

MEM MEM MEM MEM MEM

MEM MEM MEM MEM MEM

XPU XPU XPUXPUDPU

データセンタ内ネットワーク

図 1 　コンポーザブルサーバを用いたDCI構成

IOWN 2.0時代の技術開発動向――ネットワークからコンピューティングの領域へ 特 集

12 2026.2

PCIe/CXL拡張ボックス（リソースボックス）
をPCIe/CXLファブリックスイッチ（ファ
ブリックスイッチ）で接続しCPU，GPU，
ストレージ，CXLメモリを自由度高く組み
合わせて利用できるものです（図 2）．
NTTではコンポーザブルサーバの製品
ベンダ各社とも連携して，複数ベンダの製
品を組み合わせたシステムの構築や運用の
検証を行ってきました．また，DCIコント
ローラソフトを介して，複数ベンダの製品
を組み合わせたマルチベンダコンポーザブ
ルサーバの構築およびコンテナ基盤と連携
した運用を可能とすることをめざしてい
ます．
本稿では特に，DCIコントローラソフト

の実現において活用を検討している，マル
チベンダコンポーザブルサーバの管理標準
やフレームワークについて，その成立の経
緯を含めて紹介します．その次に，NTT
におけるマルチベンダコンポーザブルサー
バを実現するための課題を紹介します．管
理標準としては，データセンタインフラを
制御することを目的にDistributed�Man-
agement�Task�Force（DMTF）（3）によっ
て仕様策定され，サーバやネットワーク機

器に機能実装されてきたRedfi�sh（4）インタ
フェースについて紹介します．また，
Open�Fabrics�Alliance（OFA）（5）が提唱
する，Sunfi�sh�Framework（6）について詳
述します．Sunfi�shは，ベンダが異なるコ
ンポーザブルサーバのハードウェア（サー
バ，メモリ，アクセラレータ等）を，Red-
fi�sh等の標準的な管理インタフェースを通
じて統一的かつ一元的に管理することがで
きます．また，物理構成に依存しないコン
ピューティングリソースの管理と動的構成
（ライフサイクル管理）を可能とする論理
モデルを提供することから，NTTが実現
をめざすDCIコントローラソフトでも活用
可能なサービスフレームワークと考えてい
ます．Sunfi�shの2025年12月時点のバー
ジョンは0.5版であり，OFAにおいて，今
後のバージョン1.0版の仕様リリースに向
けた活動が活発に進められています．

マルチベンダコンポーザブルサーバ
に関する標準化の動向

ここではマルチベンダコンポーザブルサー
バの構築・運用を可能にするための仕組み

である，標準管理インタフェースやフレー
ムワークの設計について紹介します．
近年にみられるようなクラウドや仮想化，

ハイパースケール環境の普及により，大量
のサーバの管理を，統一APIを用いて自動
化する必要が生じています．一方で，サー
バ機器等の製品の管理インタフェースとし
て，これまでIPMI（Intelligent�Platform�
Management�Interface）が広く用いら
れてきましたが，IPMIは1998年に策定さ
れた古い規格であり，大量のサーバを
REST�APIで扱うことはできず，また拡張
性に乏しいといった問題もありました．そ
のような経緯もあり，2015年，DMTFが
Redfi�shを標準化しました．Redfi�shは，
RESTful�API/JSON/HTTPSベース，セキュ
リティの強化，構造化されたハードウェア
構成情報の提供，スケールアウト管理に適
した設計といった特徴があります．具体的
にはRedfi�shのデータモデルは階層的な
URI構造を通してアクセス可能なツリー構
造（リソースツリー）となっています．
大手ベンダもRedfi�shを採用し，モダン

なデータセンタ管理全般に用いられるよう
になってきています．またコンポーザブル
サーバのように，データセンタ内にあるサー
バやPCIe/CXL拡張ボックス内のデバイス
をプール化（リソースプール）し，動的に
再構成しながら使用するといった新たな需
要も出てきています．この需要にこたえる
べく，DMTFは2017年ごろからCompos-
abilityの概念を標準仕様に追加し始めてお
り，コンポーザブルサーバの制御にRedfi�sh
が適用できるようになってきています（7）．
また，Redfi�shのようにインタフェース
を規定するだけでなく，コンポーザブルサー
バを運用しやすくするためのフレームワー
クを策定する動きとして，OFA�Sunfi�shが
あります．Sunfi�shは，コンポーザブルサー
バを運用管理するためのオープンアーキテ
クチャであり，CPU，メモリ，ストレージ，
GPUなどのデバイスをネットワーク越し
に接続し，それらを柔軟に組み合わせて論
理的なサーバ（論理サーバ）を構成するフ図２ コンポーザブルサーバの概要

サーバ

ファブリックスイッチ
(PCIe/CXLファブリックスイッチ)

リソースボックス
（ PCIe/CXL拡張ボックス ）

GPU GPU XPU XPU

CPU MEM

図 2 　コンポーザブルサーバの概要

IOWN Photonic Disaggregated Computing

13

特
集

2026.2

レームワークです．Sunfi�shのアーキテク
チャを図 3に示します．
ここで，Sunfi�shの特徴として以下の 3
点があげられます．
①　ベンダニュートラル
②　抽象化されたリソース表現モデル
③　�標準ベースでオープンな管理インタ
フェース

1番目の特徴は，ベンダニュートラルな
ところです．各ベンダ製品がRedfi�shを提
供している場合，それぞれの名前空間が重
複する可能性があります．Sunfi�shでは，
それら製品に対してSunfi�shの管理空間内
でユニークなIDを割り当てることでこの
問題に対応しています．また，ベンダ独自
のAPIやツールを提供している製品に対応
するために，インタフェースをRedfi�shに
変換するレイヤ（Sunfi�sh�Agent）を設け
ています．このように複数の異なるベンダ
製品を統一的かつ一元的に管理することを
可能とするリポジトリ・サービス設計となっ
ています．
2番目の特徴は，抽象化されたリソース

表現モデルであることです．Sunfi�shは，
Sunfi�sh�ServiceにおいてSunfi�sh�Agent
を介して収集されたサーバ，ストレージ，

ファブリック構成に関する情報を，Red-
fi�shのリソースツリーとして抽象化して管
理します．これにより管理者や管理ツール
といったクライアントがどのサーバに
GPUがあり，どのメモリがどこにつながっ
ているかなど，物理面を意識せずに論理レ
ベルでリソースをプール，割り当て，再構
成できるよう設計されています．
3番目の特徴は，標準ベースでオープン

な管理インタフェースであることです．
API は DMTF�Redfi�sh お よ び SNIA�
Swordfi�sh（8）を利用しています．これらが
提供するRESTful�APIをとおしてリソース
の管理，論理サーバの構成を実施できるた
め，将来的な拡張性や異種ハードウェアの
統合にも耐え得るようになっています．
続いてSunfi�shの管理方法について説明

します．各機器のRedfi�shのリソースツリー
を基に全体を管理するRedfi�shのリソース
ツリーが統合，構成されます(図 4)．各機
器はSunfi�sh�Serviceへの登録時，Sunfi�sh
の管理空間内でユニークなIDがSunfi�sh�
Serviceから割り振られ，この仕組みによっ
て各機器のRedfi�shのリソースツリーの名
前空間の重複は回避されます．この結果，
クライアントは，Sunfi�sh�Serviceが割り

振ったIDに基づいて，統合されたリソー
スツリーを操作することが可能になります．
また，Sunfi�sh�ServiceはIDの対応表を保
持し，任意のSunfi�sh�Agent配下のコン
ポーザブルサーバ製品を操作する際には，
そのSunfi�sh�Agentが管理する名前空間の
IDに変換したうえで操作を要求します．
最後に，Sunfi�shを用いた論理サーバの
作成の流れについて説明します．なお，簡
単のために論理サーバの構成に必要なリ
ソースの情報は事前に把握できているもの
とします．
・�クライアントは，Sunfi�sh�Serviceが管
理する名前空間のIDを用いて，Sun-
fi�sh�Serviceに対して論理サーバの作
成を要求する．
・�Sunfi�sh�Serviceはクライアントの要求
に従い，記載されているリソースを持
つSunfi�sh�Agentに対して論理サーバ
を構成するリソースの確保を要求する．
このとき，リソースのIDは，その
Sunfi�sh�Agentが管理する名前空間の
IDに変換される．
・�Sunfi�sh�Agent は Sunfi�sh�Service の
要求に従い，コンポーザブルサーバ製
品に対するリソース確保を要求する．

図３ Sunfishのアーキテクチャ概要

コンポーザブル
サーバ製品
ベンダA

Sunfish Service
(Composability Service)

クライアント

例：システム管理者 / 管理ツール

コンポーザブル
サーバ製品
ベンダB

コンポーザブル
サーバ製品
ベンダC

リソースツリー

RF / SF

RF / SF / Vendor Native API

Sunfish Agent

リソースツリー

RF … Redfish
SF … Swordfish

RF / SF / Vendor Native API

RF / SF / Vendor Native API

RF / SF

RF / SF

RF / SF

Sunfish Agent

リソースツリー

Sunfish Agent

リソースツリー

図 3 　Sunfishのアーキテクチャ概要

IOWN 2.0時代の技術開発動向――ネットワークからコンピューティングの領域へ 特 集

14 2026.2

・�コンポーザブルサーバ製品はSunfish
Agentの要求に従ってリソースを確保
する．
・�Sunfish Serviceは自身のRedfishのリ
ソースツリーの構成情報を更新する．
Sunfishではリファレンス実装にも取り
組まれており，上述した機器登録の機能が
実装されています．一方で，上記の論理
サーバの作成の流れを実現するには，Sun-
fish Agentが持つリソースをどのように認
識し，Sunfish ServiceのRedfishのリソー
スツリーへどう組み込むか等を実装する必
要があります．また，Sunfish Agentをど
の単位で構成するかといったアーキテクチャ
としての検討も必要です．

マルチベンダコンポーザブル
サーバの実現へ向けた課題

マルチベンダコンポーザブルサーバを実
現するためには，私たちは大きく以下の 2
つの課題に取り組む必要があると考えてい
ます．
■統合管理の実現へ向けた課題
前述のとおり，OFAにおけるSunfishの

ようにマルチベンダコンポーザブルサーバ
の統合管理に向けた標準の策定も進んでい
ますが，実運用までを考慮すると，製品と

のギャップやアーキテクチャ上の課題がい
くつか残っていることが，これまでのSIC
による検証を通じて分かってきています．
ここではその中でも ２つの課題について紹
介します．
（1）　リソースの抽出，管理方法
Sunfishでは各製品のリソースを，Sun-
fish ServiceのRedfishのリソースツリー
で統合管理します．ここでは，Sunfish
Agent配下のリソースの情報をどのように
してSunfish Serviceに通知，統合させる
かという問題があります．物理的な接続構
成により依存関係にあるリソース群も存在
するため，その考慮も必要となります．私
たちはRedfishのComposability機能を
備えるファブリックスイッチ製品を対象に
現在Sunfishを介した構成に必要な機能の
実装および構成操作を試行しています．し
かし，リソースボックス内のデバイスをサー
バに割り当てる際に，製品仕様によっては
デバイス単位での割り当てではなく，それ
らを取りまとめるポートに対してデバイス
を割り当てる手続きとなっています．また
ポートがデバイスと一対一対応していない
こともあり，こうした製品仕様を考慮に入
れたリソースの抽出機構が必要であること
が分かってきています（図 5）．

（2）　Sunfish Agentの構成単位
Sunfish Agentの構成単位も検討が必要

な課題の 1つです．Sunfish Agentの構成
単位は図 6に示すとおり，大きく以下の 2
パターンが存在します．
・�パターン 1　ホストサーバ，ファブリッ
クスイッチ，リソースボックスごとに
Sunfish Agentを構成：この場合の利
点は，ホストサーバ，ファブリックス
イッチ，リソースボックスをそれぞれ
異なるベンダ製品を用いてコンポーザ
ブルサーバを構成できる点です．欠点
はリソースの抽出，管理方法の課題と
同じく，機器間の物理的な接続構成と
いった依存関係をSunfish Service側
で保持する必要があるためSunfish
Serviceへそのような機能を実装する
必要がある点です．
・�パターン 2　依存関係のある機器をま
とめて 1 つのSunfish Agentを構成：
この場合の利点は，Sunfish Service
側で物理構成を把握する必要がない点
も利点の 1つです．また，依存関係ご
とにSunfish Agentが存在しているた
め，障害発生時の製品の影響範囲を特
定しやすい点です．欠点はSunfish
Agentに障害が発生した際の復旧作業
が複雑になる点です．Sunfish Agent

図４ Sunfish Serviceによるリソースの統合管理

リソースプール

コンポーザブル
サーバ製品
ベンダA

Sunfish Service
(Composability Service)

コンポーザブル
サーバ製品
ベンダB

コンポーザブル
サーバ製品
ベンダC

リソースツリー Sunfish Agent

リソースツリー

RF / SF

RF / SF / Vendor Native API

RF / SF

RF / SF

RF … Redfish
SF … Swordfish

RF / SF / Vendor Native API

RF / SF / Vendor Native API

Sunfish Agent

リソースツリー

Sunfish Agent

リソースツリー

図 ４ 　Sunfish Serviceによるリソースの統合管理

IOWN Photonic Disaggregated Computing

15

特
集

2026.2

に障害が発生した際，それが管理して
いるすべての機器の状態を依存関係に
基づき整合性のあるかたちで復旧する
必要があります．
このように，Sunfish Agentの構成単位
には複数パターンが存在し，それぞれに利
点，欠点が存在します．Sunfish Service
とSunfish Agentの独立性が保たれること
から，私たちはパターン 2の実現をめざし
ています．

■コンポーザブルサーバの実運用に向けて
最後にコンポーザブルサーバの機能検証
等で得られた実運用に向けた課題について
共有します．
（1）　�論理サーバの作成，構成変更に要す

る時間
論理サーバを作成，再構成する際にはそ

れに要する時間が運用上課題となり得ます．
サーバの再起動には時間を要するため，リ
ソースの割り当て・解除といった操作では，

可能な限りサーバを再起動することなく操
作が完了できる必要があります．論理サー
バの作成，再構成時にサーバの再起動が不
要な動的構成変更機能は一部ベンダで提供
されています．
（2）　物理構成情報の管理，更新機構
サーバとリソースボックスの物理的な接
続情報は，Sunfishによるリソースを抽象
化するうえで必要な情報です．そのため，
このような物理的な接続情報をコンポーザ

図５ 製品仕様によるリソース管理の難しさ

デバイス

ポート

デバイス
ポート

デバイス
ポート

デバイス
ポート

デバイス

デバイス

ホスト
ポート

ホスト
ポート

ホスト
サーバ

ホスト
サーバ

ファブリックスイッチ

リソースボックス

サーバ

デバイスポートに割り当てられている
デバイスの情報を取得できない

デバイスの割り当ては
デバイスポート単位

デバイス

デバイス

デバイスポートに割り当てられるデバイスが
スロット位置により決まっている

図 ５ 　製品仕様によるリソース管理の難しさ

図６ Sunfish Agentの構成単位

パターン２：依存する機器をまとめてSunfish Agentを構成パターン１：機器ごとにSunfish Agentを構成

ファブリック
スイッチ

リソースボックス

RF / SF / Vendor Native API

RF / SF / Vendor Native API

サーバ
Sunfish Agent

リソースツリー

RF / SF / Vendor Native API

ファブリック
スイッチ

リソースボックス

サーバ

RF … Redfish
SF … Swordfish

RF / SF / Vendor Native API

RF / SF / Vendor Native API

RF / SF / Vendor Native API

Sunfish Agent

リソースツリー

Sunfish Agent

リソースツリー

Sunfish Agent

リソースツリー

図 ６ 　Sunfish Agentの構成単位

IOWN 2.0時代の技術開発動向――ネットワークからコンピューティングの領域へ�特 集

16 2026.2

ブルサーバから取得できることはSunfish
において重要です．そうでなければ物理的
な接続情報を手動で管理することになり，
インフラの運用コストが増大するほか，オ
ペレーションミスにより障害を招く可能性
も考えられます．コンポーザブルサーバに
よりシステム全体の複雑さが増しているこ
とを考慮しても，物理構成情報の管理，更
新機構は必要です．マルチベンダコンポー
ザブルサーバを実現するために，本機能を
具備するよう各コンポーザブルサーバベン
ダへの働きかけをしていくことを検討して
います．
（3）　機器間のケーブル接続作業の増大
PCIe拡張ボックス，PCIeファブリック
スイッチはレーン数にはよるものの，基本
的に多くのPCIeケーブルを要します．ま
た，世代によりケーブルの太さも大きく変
わり，例えば第 5世代の場合は，太いうえ
にケーブル長も短いため，ケーブルの取り
回しが容易でないほか，ケーブル長の制約
により接続するサーバ機器などを含め，物
理的なラッキング位置も考慮が必要でした．
さらにPCIe拡張ボックスに関しては，例
えばGPUの補助電源ケーブルはベンダ提
供の製品でないと使用ができず，市販品等，
ベンダ提供ではない製品を使用するとボッ
クスが故障するといった問題もみられるな
ど，作業時に考慮すべき点が多々ありま�
した．
（4）　可用性の向上
コンポーザブルサーバは大きく，サーバ，
ファブリックスイッチ，リソースボックス
の 3つで構成されます．そのため，ファブ
リックスイッチやリソースボックスに対し
て可用性の向上が必要ですが，どのように
それを実現するかも重要です．例えば，リ
ソースボックスを，その中に搭載されてい
るデバイスを含めて，リソースボックス単
位で単純にアクティブ・スタンバイ構成を
とると，待機系のリソースを持て余すこと
になり，リソースの効率活用というコンポー
ザブルサーバの本来の目的に反する結果と
なります．

（5）　低レイヤまで見据えた構成の必要性
論理サーバの構成時，単にリソースプー
ルから構成可能なリソースを選択するだけ
でなく，可能な限り，その上で動作するワー
クロードを考慮した，より低レイヤを意識
した構成が望ましいと考えます．例えば，
NVIDIAのGPUDirect RDMAといったオ
フロード機能を使用する際には，PCIeス
イッチやルートコンプレックスを意識した
リソースの選択がワークロードの性能やデー
タ処理の効率性に影響を与えます．
（6）　構成オペレーションの安全性確保
コンポーザブルサーバはその状態管理に
不整合が起きるとシステムが停止するおそ
れがあります．マルチベンダコンポーザブ
ルサーバを実現するうえでは，これらトラ
ンザクション管理の徹底が非常に重要です．

今後の展開

本稿では，DCIの技術開発におけるマル
チベンダコンポーザブルサーバ実現の取り
組みとして，統合管理として現時点で有力
と考えるSunfishや，その設計およびコン
ポーザブルサーバの実運用上の課題を紹介
しました．
今後は，2026年度の商用化をめざす

DCI- 2（9）の実現に向けた研究開発を強化し
ていきます．具体的には，Sunfishの設計
思想を取り込みながらマルチベンダコンポー
ザブルサーバをDCI- 2 のシステムに統合
していきます．さらに，現状のSunfishの
仕様やそのリファレンス実装に不足してい
る機能等をOFA Sunfishに提案し，統合
管理の標準化と普及を推進していきます．
そのうえで，マルチベンダコンポーザブル
サーバとコンテナ基盤との連携した運用を
可能とするための取り組みも行っていきま
す．具体的には，コンテナ基盤のデファク
トスタンダードとなっているKubernetes
では，動的リソース割り当て機能（Dy-
namic Resource Allocation）が提供さ
れ始めていますが，本機能と連携して，例
えばコンポーザブルサーバのリソースボッ

クス内のデバイスをワーカーノードに動的
に割り当てるような取り組み（10）も始まって
おり，NTTも参画しています．また，DCI
の各種オペレーション機能の拡充に向けて，
DCIコントローラソフトの技術開発や
IOWN Global Forumへのシステムリファ
レンスの提案を行いつつ，AI・映像処理を
必要とするモビリティユースケースや，そ
のほかのユースケースへの技術の展開も図
ります．

■参考文献
（1）	 https://journal.ntt.co.jp/article/33807
（2）	 https://journal.ntt.co.jp/article/35374
（3）	 https://www.dmtf.org/
（4）	 https://www.dmtf.org/standards/

redfish
（5）	 https://www.openfabrics.org/
（6）	 h t tps : / /www .open fab r i cs . o rg /

openfabrics-management-framework/
（7）	 https://www.dmtf.org/dsp/DSP2050
（8）	 https://www.snia.org/forums/smi/

swordfish
（9）	 https://www.rd .ntt/ forum/2024/

keynote_2.html
（10）	https://github.com/CoHDI

（左から）	 �幸田 健介/ 二ノ方 一生

IOWNはネットワークだけでなく，コンピューティン
グ基盤に変革をもたらす構想です．その構想の実
現に向けて，IOWN Global Forum等でのアーキ
テクチャ議論やパートナ企業との連携を行い，技術
開発の取り組みを推進していきます．

◆問い合わせ先
NTTソフトウェアイノベーションセンタ

IOWN Photonic Disaggregated Computing

17

特
集

2026.2

